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ABSTRACT

Web application testing is an integral part of the web application development

process. Faults within a web application can damage a company’s reputation and lead

to financial losses. Customers will lose confidence if they experience inconvenience.

Rigorous testing is necessary to expose faults before production release. Test case

generation is a time- and resource-consuming process. Testing requirements increase

exponentially with code size, and it might be impossible to exhaustively test any suf-

ficiently complex software. This is specially true of web apps where you have multiple

platforms integrating together.

In this thesis, I propose the use of genetic algorithm to generate usage-based

test cases. Genetic-algorithm-based test case generation requires considerably less re-

sources and is customizable and automated. I modeled usage-based test cases (i.e.,

user sessions) as components of genetic algorithm, namely genes, chromosomes and

genomes, and created a customizable and automated genetic-algorithm-based testing

framework. I carried out several sets of experiments, running the genetic algorithm and

tuning various parameters to evaluate the effect of each parameter on the resulting gen-

erated test suite. Our results show that genetic-algorithm-based test case generation

is very cost effective. The test suite is considerably smaller in size compared to the

initial collection of user sessions and still maintained high resource coverage.

ix



Chapter 1

INTRODUCTION

A web application, web app in short, is a web-based software application that

users access over the Internet through a web browser. Web apps are dynamic in nature,

involving interaction with users, whereas websites are static and primarily used to

disseminate information. Web applications might include web pages, which are static,

e.g., an about page, in addition to dynamic pages.

The use of web apps have dramatically increased over the last decade. Most of

consumer-based software products are cloud-based since data has to be shared among

millions of people. Examples include Facebook, Twitter, etc. Companies that provides

software as a service (SaaS) heavily rely on cloud computing and most of these software

are web-based, e.g., Salesforce. Web apps provide a general platform for users to share

their data, be it consumers or enterprises. Web apps are not restricted to desktop

computers, since they can be used on mobile devices as well.

Software testing is an integral part of the software development process. Test-

ing improves performance and customer satisfaction, which translates to more profit

for companies. Software failures can cause millions of dollars worth of damage. In

April 2015, Starbucks was forced to close down 60% of their chain stores in USA and

Canada due to a software glitch that affected the cash registers [3]. Software testing

is expensive [6, 9] According to Srivasta et al., developers spend 50% of the software

system development resources on testing [14]. A fundamental part of software testing

is test-case generation. A test case is a set of conditions under which a tester will

determine whether a web app under test satisfies requirements or works correctly. Test

cases are used to expose faults within the web app and they are building blocks of
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software testing. Creating more test cases requires more resources. Moreover, man-

ual test-case generation is very time consuming and does not guarantee the best test

cases since it depends on the engineers writing them. Therefore, the goal is to reveal

maximum number of faults using the least number of test cases.

I propose using genetic algorithms to automate the process of test-case gener-

ation for web applications. Using logged user sessions, we initialize our genetic algo-

rithm. The goal is to generate an evolved set of test cases that will reveal faults in the

web application.

My contributions in this thesis:

1. explored the use of genetic algorithms in test-case generation of web application
testing,

2. designed and implemented a model for representing web application test cases as
components of genetic algorithms, namely genes, chromosomes, and genomes,

3. defined crossover and mutation functions in terms of user sessions relevant to web
application testing,

4. created a framework for automatically generating test cases (evolved user ses-
sions) using tournament selection,

5. analyzed the results and explored which parameters have the most impact on the
results,

6. provided recommendations to web application testers for how to use the frame-
work for their process.

This thesis aims to serve as a starting point for any future researcher looking into

the use of genetic algorithms to automate test case generation for web applications. I

believe my approach of appropriating a genetic algorithm to work with web applications

will be invaluable.

The rest of the thesis is laid out as follows:

Chapter 2 describes web applications and web application testing, pointing out

key differences between desktop application testing and web application testing. It

also discusses how genetic algorithms work, defining key terms on the way. Chapter 3

lays out the approach I took to design and implement a genetic algorithm to process
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logged user sessions and generate evolved user sessions, which then become our test

cases. Chapter 4 delves deeper into our hypotheses and how the experiment is designed

to test out the hypotheses out. It will also present the findings of the experiment and

will analyze and evaluate them. Chapter 5 describes the limitations of the experiment

and gives pointers to future work.
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Chapter 2

BACKGROUND

This chapter will give a general overview of web applications, web application

testing–why it is important and why it is hard, and genetic algorithms and its com-

ponents. The chapter aims to arm the reader with relevant knowledge that they will

require to understand the thesis.

2.1 Web Applications

Web applications are internet-based software applications, where the users in-

teract with them by sending requests and receiving responses. As shown in Figure 2.1,

a web application sits on a server, and the users makes requests to the server using

a web browser. The server accepts the requests and generates the appropriate result

and sends it back to the user. The browser renders the returned result and displays

it through a user interface (UI), which is human friendly. The core component of a

web app is its interactions with users. The back-end logic that handles these interac-

tions are stored on the server that communicates with its database. Every time a user

makes a request, the back-end logic determines what the returned results will be. The

front-end logic handles how the results will be displayed to the user.

Consumers of web apps access data and features of the application via requests,

usually a HyperText Transfer Protocol (HTTP) request. An HTTP request is made

up of the following components: request method, resource and query string. Figure

2 provides a visual description of a HTTP request. When a web browser sends a

HTTP request to the server, the server processes the method and resource and takes

appropriate action. For example, if the request is to retrieve a particular web page

(a GET method), then the server will look for that specific web page by looking the
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Figure 2.1: Web Application Architecture

resource and the query string. If such a web page exists, the server will then send

back a response in the form of HyperText Markup Language (HTML) data, which the

browser renders and displays in a human friendly format. If the server fails to find the

resource or there is a fault in the back-end logic of the web application, the server will

respond with the appropriate error.

Web applications are usually dynamic, meaning the content of the web pages

are not static. The content of the web page depends on the back-end code. If the

content is derived from a database, the content might change as the database changes

or updates. The content might also change due to user interactions. The database and

other state is known as persistent state because state generated by one user can persist

beyond the user’s time interacting with the application.

A simple example is a web application that displays a calendar. The calendar

value will change as days pass. On the other hand, the content of static pages do not

change, unless the creator explicitly changes them manually. Faults in the dynamic

parts of the web application are more common and more expensive to fix than faults on

a static page. Dynamic web applications are more complex since they involve intricate

back-end logic and usually databases. A fault in a heavily used section/feature of the

code can cause the whole web application to crash. Therefore, testing dynamic web

applications is harder and more important.
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2.1.1 User Requests, Access Logs, and User Sessions

Web browsers generally make requests to the server using the HyperText Trans-

fer Protocol. A request has the following core components: request method that dic-

tates what kind of request it is, request resource composed of resource path and resource

name that acts as a Uniform Resource Location (URL) which allows the server to filter

and serve the correct response and query string that passes in the data a server might

need to return the correct response or save in the database. Figure 2.2 shows the

overview of a HTTP request.

Figure 2.2: A HTTP Request

A user session is a session of activities of a user with a unique IP address on a

web site for a specified time period, usually 30 minutes. If a user takes a break but

comes back within the time limit i.e. 30 minutes, it is still considered one session. User

sessions are a good way of tracking how the user interacts with the web app. Web

applications store these user sessions in files called access logs that can parsed and

processed later to analyze user behaviour. Access logs preserve the record of how the

web app was used.

2.2 Web application testing

2.2.1 Importance and Challenges of testing

A software application should have less than 10 errors per 1000 lines of code to

avoid functional failure [1]. Functional failures might reduce customer confidence and

influence them to switch over to competitor’s product. This is specially true of web
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applications since switching over to a competitors product is just a couple of clicks away.

Losing a customer is very expensive for a company. Harvard Business Review reports

that ”acquiring a new customer is anywhere from five to 25 times more expensive than

retaining an existing one” [5]. Therefore, it is extremely pertinent for tech companies to

keep their customer satisfied and their experience bug free. Moreover, faulty software

can expose private data, which would not only decrease customer confidence but also

extensively hurt lives too. Security is one of the biggest issues for todays developers

and robust testing is required to minimize such risks.

Testing requirements increase exponentially with code size [1] and it might be

impossible to exhaustively test any sufficiently complex software [14]. Even the simplest

web applications might have thousands of lines of code, and since testing requirements

increase exponentially, it requires a lot of resources to extensively test such software.

Software testing is laborious, tedious and time-consuming work. Moreover, since soft-

ware are continuously evolving, their test cases also need to evolve. This makes testing

labor and time-intensive. Voas and McGraw note that modern software systems are

too large to be checked by white-box testing, and white-box testing cannot detect all

program faults, such as missing code.[7].

Fisher et al. reports that testers suffer from biases while developing test cases

due to knowledge of the system internals, mental models, and expectations [2]. This

might lead to under exploration of many testing regions. Moreover, test cases generated

by testers might not robustly test heavily used sections/features of the web app since

they might not focus on fixed sections.

2.2.2 Types of Testing

White box testing requires the tester to have knowledge of the underlying web

application architecture and involves covering the code of the application [8]. For a

web application, that means knowing before hand both the back-end and front-end

architecture of the application. On the other side of spectrum is black box testing

where the architecture of the program is not required to be known beforehand [8]. You
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simply test if a input matches the expected output or not. In grey box testing, you

need to have limited knowledge of the internal working of an application.

2.2.2.1 User-session-based Testing

User-session-based testing involves creating test cases from selected parts of user

sessions. Creating test cases from user sessions has been proven effective by Sprenkle

et al, since user sessions reflect actual usage by the user that the tester might not have

conceived during earlier development phase [12]. Moreover, test suites created from

user sessions focus on areas that the users have interacted with higher frequency. These

areas of the web app are critical and faults that disrupt the features provided by these

areas are more costly than faults in areas not frequented by the users. User session

based testing is also effective in regression testing.

2.2.2.2 Regression testing

Regression testing is used to make sure updated or changed software still per-

forms the previous duties without any glitch. Test cases made from user sessions before

the software update/patch can test whether the update has broken any previous func-

tionality. New test cases can be made with the user sessions after the software update

which can be used for regression testing after the next round of updates.

2.2.3 Evaluating Test Suites

One of the challenge of testing is how we evaluate the efficacy of a test suite.

One of the common methods of evaluating a test suite is to calculate its code coverage.

Code coverage simply is a measure of what percentage of the total code did the test

suite cover. The idea is that the more code coverage, the higher the probability of

finding a bug.

In web applications testing, we can measure a different kind of coverage that is

based on the HTTP requests. [11] Request-based coverage is correlated to code coverage

since covering a request involves running specific code. For example: GET /User/Login
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and GET /User/Logout involve different lines of code and covering these two requests

will run different parts of our code.

2.3 Genetic Algorithms

Genetic algorithms (GA) are adaptive search techniques used to solve optimiza-

tion problems. GA mimics biological evolution process closely. In evolution, advanta-

geous genes are given preference and has higher survival percentage. Similarly in GA,

predefined genes and chromosomes that have higher fitness are allowed to breed to

create genes/chromosomes of higher fitness. A chromosome is made up of genes, where

the genes are the basic unit of the GA. A suite of chromosomes is called a genome.

Reproduction can be done in chromosome or genome level. Figure 2.3 shows the basic

architecture of GA.

Genetic algorithm has been used in test case generation by [10],[2],[14], [1], [7]

and [9].

2.3.1 Selection

A selection scheme is applied to determine how individuals are chosen for mat-

ing. Individuals chosen for mating are called parent population and the population

generated by reproduction is called children population. Selection can be divided into

two categories: initial population and reproducing population. Initial population is

usually chosen at random but you can filter them based on the initial fitness value.

A cycle of parent population reproducing a children population is called a generation.

Reproduction is done for multiple generations.

2.3.1.1 Tournament Selection

Tournament selection is a selection scheme used to choose parent chromosomes

for reproduction. A specified number of individuals are chosen randomly from the par-

ent population and each individual is tested for their fitness. The one with the highest

fitness is chosen as a parent individual. The process is repeated to get the second

parent. The two winners go through crossover to produce two child individuals. The
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process is repeated as many times as required to get the child population, producing a

new generation of individuals.

2.3.2 Reproduction

Reproduction is the process by which we generate new individuals from selected

individuals. The process takes in the parent population and selects individuals for

reproduction and then generates child population. The child population generate by

reproduction is a new generation of individuals.

2.3.2.1 Crossover

Crossover is one the two ways of reproduction. It involves swapping a part of a

chromosome with another i.e. swapping the first half of a chromosome with the bottom

half of another. Crossover between two parents usually create two child chromosomes,

but it depends on the programmer.

2.3.2.2 Mutation

Mutation usually involves random insertion or deletion of genes in a chromo-

some. Sometime, a gene altered in minor ways. Mutation brings diversity within the

population.

2.4 Conclusion of Open Problems

In the next section I will discuss the goals of the thesis, discuss research questions

and my hypotheses. I will elaborate my approach of testing out the hypotheses.
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Figure 2.3: Architecture of Genetic Algorithm
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Chapter 3

APPLYING GENETIC ALGORITHM TO WEB APPLICATION
TESTING

This chapter presents the problem we are trying to solve and lays out our goals

for the thesis. We describe how we model of web app usage into components of genetic

algorithm, our design of applying genetic algorithm to web application testing, and the

prototype implementation of the model and the genetic algorithm.

3.1 Problem Statement

Testing web applications helps developers find and fix faults in the web applica-

tion and ensures smooth functioning of the web app. Interrupted functioning of a web

app will dissuade potential customers. Faults in web applications can cause millions

of dollars of loss for businesses (Section 2.2.1), but testing is expensive and time con-

suming. Genetic algorithm (GA) can automate and expedite the process of test-case

generation. GA specializes in optimizing solutions, since it takes a greedy approach

when creating test cases: taking the best genome during reproduction. Therefore,

given a set of user sessions, we will use GA to find a cost-effective test suite that

reveals bugs/faults within a web application during regression testing. As discussed

in Section 2.2.1, testers suffer from biases while developing test cases which leads to

under exploration of many testing regions. Moreover, they might not robustly test

heavily used sections of the web app. To overcome such biases, we automatically gen-

erate test cases from logged user sessions. Usage based test case generation reflects

actual behaviours of authentic users and therefore focuses on areas that future users

will potentially use.
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3.2 Goals and Non-Goals

Goals for my thesis are as follows:

1. Generate a test suite that is reflective of but not necessarily identical to actual
web application usage

2. Reveal bugs/faults with a feasible number of test cases.

3. Automate the process of test case generation.

4. Make test-case-generation framework that is customizable for testers according
to the web application’s characteristics and the testers’ demands.

My thesis does not claim to achieve the following:

1. Full code coverage of a web application

2. Minimum number of test cases that find all faults.

3. Minimum amount of time to execute these test cases.

3.3 Model

As discussed in Section 2.1.1, we represent web application usage as user ses-

sions, which consist of requests made to the web app by users. To apply Genetic

Algorithms to web application testing, we modeled web app usage as genes, chromo-

somes, and genomes. A gene consists of a request, a chromosome consists of a user

session (sequence of requests for a given user), and a genome is a sequence of user

sessions. Figure 3.1 illustrates a gene, a chromosome, and a genome.

The output of the GA is a sequence of user sessions that will form our test suite

since the sequence is important, given the persistent states of the web application and

our test suite will consist of the most cost-effective sequence of test cases. Moreover,

the output should reflect the usage of several user sessions to mimic the real world

usage of web apps, given the web app is accessed by multiple users in reality.

3.4 Genetic Algorithm Process

Our approach can be broken down into three parts: converting user sessions

into inputs for the genetic algorithm, creating an initial population from these inputs,
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Figure 3.1: Gene, Chromosome, and Genome

and running the genetic algorithm. The input for the whole process are the access logs

and the output is the most cost-effective genome, which will be our test suite.

Figure 3.2 gives an overview of our approach.

3.4.1 Converting user sessions into genomes

Given a set of user sessions, our parser processes them and converts them into

genomes, where a genome is a sequence of user sessions. The length of the genome

is tunable and can be changed according to a testers’ requirements. The length can

be chosen based on the total number of logged user sessions and how good each user

session is in terms of its number of requests. If you choose a longer length, the resulting

genome may have increased coverage but will likely contain redundant requests. The

initial population becomes the first parent population for the genetic algorithm.

3.4.2 Generating the initial population

The initial population of user sessions is randomly selected from the set of user

sessions from the previous step. With the generated genome, the user sessions are

in their original, collected order. We used a initial fitness threshold to filter out the
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Figure 3.2: Genetic Algorithms for Web Application Testing

weakest user sessions. (We provide more information about how we define fitness in

Section 3.4.3.1.) The threshold should be around the mean fitness of the genome pool.

If you choose too high a threshold, then you may not be able to fill the initial population

quota. If it is too low, then you might miss out on better genomes.

3.4.3 Selection

Selection is the process where we select an individual from the genome pool

based on their fitness. The standard algorithm for selection is tournament selection

(2.3.1.1), in which we randomly select a fixed number of genomes and evaluate their

fitness to find the genome with the best fitness, which then becomes a parent. For

crossover, we repeat the process to get the second parent.

The random selection of a fixed number of genomes during tournament selection

ensures that we do not pick a select few genomes as the parents every time. The random

selection distributes the probability of choosing a genome over the whole genome pool.

If we only selected the best overall genomes, we would pick a select few every time,

losing out on the unique resources of the other genomes.
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We find the best genome—our test suite—at the end of the GA process by

evaluating the last generation and selecting the genome with the best fitness.

3.4.3.1 Fitness Function

A fitness function evaluates the fitness of a genome. Our fitness function is

comprised of two metrics: resource coverage and length of the genome (i.e., the total

number of requests). In general, we want to increase coverage and maintain a feasible

number of requests required to achieve the coverage. The fitness function should reward

coverage and punish length. The fitness function can be altered according to the needs

of the tester. The overall result of GA depends on the fitness function, since the

GA favors genomes with higher fitness and the way you define fitness will dictate the

output.

3.4.4 Reproduction

Genetic algorithms have two methods of reproduction: crossover and mutation.

Genomes go through either crossover or mutation in each cycle. These reproduction

algorithms can be designed at the genome- or chromosome-level. For this thesis, I

focused on designing crossover and mutation for genomes because web applications have

persistent state and, therefore, realistic usage and code coverage is highly dependent

on the sequence of requests.

The algorithm chooses whether to reproduce using mutation or crossover de-

pending on the mutation threshold. We randomly generate a number and mutate the

genome if the generated number is higher than the mutation threshold. A mutation

threshold of 0.5 means we will mutate 50% of the time.

We stop reproducing when we have generated the desired number of child

genomes. The generated child population then becomes the parent population for

the next cycle of the GA.
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Figure 3.3: Crossover for a genome

3.4.4.1 Crossover

The crossover function takes as input two genomes and produces two child

genomes, where each child has traits from both parents. The child genomes consist of

recombined fragments of their parents’ genomes.

Figure 3.3 illustrates crossover for a genome. A split point is randomly chosen

in each genome. The part before the split point in genome A is joined with the part

after the split point in genome B and vice versa. The result is two child genomes with

chromosomes from both the parents. Figure 3.3 illustrates crossover for a genome.

Crossover increases the resource coverage of the test suite, since we cover more

unique resource paths, making it more effective in finding faults within a web app.

The parent genomes are selected using tournament selection, which selects the best

genome, in terms of fitness, from a randomly picked number of genomes. Since, we

always pick the genome with the highest fitness, we prefer genomes that cover more

unique resources. This results in the child genomes having a higher fitness.
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3.4.4.2 Mutation

Mutation operates on one genome where a random chromosome (user sessions) is

switched with another chromosome from the chromosome pool (the set of user sessions),

also randomly picked. Figure 3.4 illustrates mutation for a genome.

Mutation increases diversity in our population. Since, we replace a chromosome

in one of the genome with a chromosome from the chromosome pool, we add newer

chromosomes that might not exist in the genome pool, since the genome pool is re-

stricted to the initial 100 genomes with their randomly chosen chromosomes. More

diversity means we have a wider variation of genomes, each with a different set of chro-

mosomes, within our genome pool. Without mutation, our genome pool would have

been restricted to the chromosomes chosen during initial population generation.

Figure 3.4: Mutation for a genome

3.5 Related Work

Xuan Peng and Lu Lu proposed using genetic algorithm to generate test cases

from logged user sessions [10]. They created a relation dependent graph of a web

application and used a genetic algorithm to create test cases for the web app. They

evaluated the test cases based on how many relational transitions the test cases covered.
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There are fundamental ways their approach can be improved. Comparing their model

with ours:

• Fitness function: Xuan Peng and Lu Lu’s fitness function is evaluating the test
suite (chromosome) based on its coverage of data dependence relation and link
dependence relation. They are finding the percentage of total data dependence
and link dependence relation of the test suite (chromosome) covers. They do not
take length of the test suite into account and therefore their genetic algorithm do
not try to minimize the length of the test suite. Genetic algorithm optimizes the
solution i.e. test suite based on the fitness function. Since their fitness function
focuses solely on increasing coverage, their GA will try to increase coverage by
increasing length. Therefore, the generated test suite will be large and not cost
effective.

Our fitness function (3.2) rewards resource coverage and punishes length and
therefore tries to make the generated test suite cost effective.

• Xuan Peng and Lu Lu define transitional relation as page–request–page. This
is confusing, since the request sent by the first page is the same as the URL of
the second request. It ultimately becomes: URL (first page) → Request/URL of
second page → URL (second page).

Comparing their experiment evaluation with our evaluation:

• There experiments and results are based on a small toy application. The web
app they used is only used for research purposes. It is not a commercially used
product. For data collection, they invited students to use the web app and logged
their user sessions. Our subject application (4.2) is a fully functional commercial
web app and data collected over a semester (3̃ months) from a number of students
over multiple classes. Our data collection was with authentic users of the web
app, not invited ones. Therefore, our data better represents the average usage of
the web app.

• Their input size is very small with only 87 user sessions and 3219 requests, where
as we used 842 user sessions and 32156 requests. Moreover, their subject applica-
tion is also small with only 9 pages and 15 unique transitions, where as we have
167 unique resources.

3.6 Prototype Implementation

We implemented our prototype primarily in Python. First, we create user ses-

sions by parsing access logs. Then we convert the user sessions into the inputs for the

genetic algorithm, namely: genes, chromosomes and genomes. We make the genomes
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reproduce for a certain number of generations, evaluating their fitness in each turn

and selecting the ones with highest fitness to reproduce (tournament selection). Our

output is the genome with the highest fitness value after the end of reproduction cycle.

In the remainder of this section, we describe these steps in more detail.

3.6.1 Converting Web App Usage into Genomes

We parsed access logs of the web application to create user sessions based on

the user’s IP address and the time period of their interactions with the web app. Each

user session was saved in a ’.tc’ (i.e., ”test case”) file. The user sessions were converted

into sub-components of genetic algorithm.

We model a chromosome as a user session, and a sequence of chromosomes make

up a genome. Our initial genome pool have a length of 100 genomes that are randomly

made by randomly choosing a number, that we can tune as required, of chromosomes

from our chromosome pool. During this process, we evaluate the fitness of each genome

and put it in our initial population pool if its fitness value is above the initial fitness

threshold, to filter out genomes with weak fitness. Our threshold for this process was

0.1, since that was the median fitness of the genome pool. We want to filter out the

weakest genome but also needed to make sure we have at least 100 genomes with fitness

equal or above our threshold. Since our user sessions are from actual usage of the web

app, some of them contain only a few requests i.e. just login and logout. Therefore,

we filter out the user sessions that have weak fitness.

3.6.2 Selection and Reproduction

The initial population is our first parent population. We randomly generate

a number between 0 and 1, and if the number exceeds the mutation threshold, the

algorithm performs a crossover. Otherwise, the algorithm performs a mutation. Our

base mutation threshold was 0.1, meaning we mutate 10% of the time. We prioritize

increasing coverage over reducing the number of requests in our test suite, therefore
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we want to do crossover more often than mutation since crossover tries to increase

coverage.

We keep doing crossover or mutation until we have 100 genomes in our child

population. The child population becomes the parent population for the next cycle of

the GA.

We repeat the process for a fixed number of generations. The number of gener-

ation we choose is tunable, and it affects the generated test suite in terms of coverage

and length. The fitness stays same or increases with every iteration.

When we reach our generation limit, we evaluate the fitness of each genome

in our latest child generation. The genome with the highest fitness becomes our test

suite.

3.6.2.1 Fitness Function

To measure how many requests a genome covers, we find the number of unique

requests in the genome and divide it by the total number of unique requests in the web

app. A unique request has a unique request method plus resource signature, that no

other request in our unique request pool has. They act as a Unique Resource Locator

(URL). We get the total number of unique requests in the web app by parsing all the

logged user sessions and making a list of unique requests.

Coverage =
unique requests in genome

total unique requests
× 100 (3.1)

Fitness is composed of coverage and the number of requests needed to get the

coverage: the higher the coverage, the higher the fitness, and the longer the length,

the lower the fitness. Since, the range of length is in the thousands of requests, we

took the log of length to better fit the curve. We have two weights: w1 and w2. These

weights determine our prioritization of coverage and length. If we want to prioritize

coverage more, then w1 will be bigger than w2 and vice versa. Since the primary goal

of the thesis is to increase coverage, our w1 is higher than w2. But if w2 is too low then

the output genome will be too long and won’t be cost-effective.
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Fitness = coverage× w1 +
1

log(length)
× w2 (3.2)

3.7 Conclusion

We have designed our approach to automatically convert web app usage into

parts of genetic algorithm, so that we can run the genetic algorithm to generate a cost-

effective test suite. The framework is customizable, so that we can tune parameters

and analyze their effect on the output. We evaluate the effect of the parameters in the

next chapter.
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Chapter 4

EXPERIMENTAL STUDY

This chapter will address the research questions and our hypotheses, how we are

testing out our hypotheses, and evaluate and analyze the experimental results. The

chapter will also give a set of recommendations for future testers.

4.1 Research Questions and Hypotheses

4.1.1 Research Questions

The research questions this thesis is aiming to address are:

1. Is genetic-algorithm-based test case generation cost-effective?

2. What are the characteristics of the genetic-algorithm-derived test cases under
different parameters?

4.1.2 Hypotheses

Our hypotheses are as follows:

1. Genetic-algorithm-based test-case generation is cost effective.

2. Increasing the number of generations will yield more cost-effective test suites.

3. Increasing the mutation rate will decrease the resulting test suite’s resource cov-
erage.

4. Increasing the initial number of chromosome per genome will increase the result-
ing test suite’s resource coverage.

4.2 Subject Application

Since our user-session-based testing techniques are language-independent, re-

quiring user sessions but not source code for testing, our techniques can be easily

extended to other web technologies.
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Subject # of Classes NCLOC Unique Resources
Logic 109 10718 167

Table 4.1: Subject Application Characteristics

Subject # User Sessions # Requests
Logic 842 32156

Table 4.2: Characteristics of User Session Sets

For this thesis, we evaluate our approach on an online symbolic logic tutorial,

which we call Logic. Logic is written in Java using servlets and JSPs. The applica-

tion consists of a back-end data store, a Web server, and a client browser. Table 4.1

summarizes the applications’ code characteristics. The application has two primary

users: students and professors. Students have access to quizzes which they can take

and submit. They also have access to practice quizzes. Professors can access submitted

quizzes and grade them. They can also make new quizzes and make them accessible

to students.

Logic’s user sessions were previously collected during two academic semesters.

We converted the user accesses into user sessions using Sprenkle et al.’s framework [13].

Table 4.2 shows the characteristics of the collected user sessions, in terms of the number

of user sessions and the number of user requests.

4.3 Methodology

We run our prototype implementation (3.6), choosing and tuning the parameters

as required for the evaluation of our hypotheses. For all the runs of the test-case-

generation algorithm, the initial fitness threshold during initial population generation

is fixed. We find the average fitness of all of our user sessions and set our threshold

around that, so that we filter out the weakest genomes but at the same time have

at least 100 genomes for our initial population. Moreover, we gave more priority to

increasing coverage than reducing length by making w1 in our fitness function (3.2)

twice as big as w2 (w1=2, w2 = 1).
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We measure resource+type coverage and the number of requests (length) in

each genome for every generation as well as the time taken for each run of our genetic

algorithm. These metrics are also the components of fitness: the higher the coverage,

the higher the fitness, while the higher the length, the lower the fitness.

We evaluate the effect of tuning the following parameters on our resulting test

suite:

1. Initial number of chromosomes per genome. We performed three experiments
with the following values of initial number of chromosomes per genome: 25, 50,
100. The mutation threshold was fixed at 0.1, and the number of generations
was fixed at 30.

2. Mutation threshold. We performed three experiments with the following values
of mutation threshold: 0.1, 0.25 , 0.5. In these experiments, the initial number
of chromosomes per genome was fixed at 100, and the number of generations was
fixed at 30.

3. Number of generations. We performed one experiment with 100 generations to
see how the number of generations affect fitness of the genomes. During this
experiment, the initial number of chromosomes per genome was fixed at 100 and
mutation threshold was fixed at 0.25.

Each experiment was repeated 30 times, taking the mean value of resource

coverage and length for each generation. We also calculated the standard deviation for

resource coverage and genome length for each generation.

4.4 Results

This section presents the results of the experiments described in the previous

section.

4.4.1 Comparing the size of the initial population

Figure 4.1 provides an overview of the effect of increasing the initial number

of chromosomes per genome. The left y-axis represents resource coverage of the best

genome, our final test suite, from the last generation. The right y-axis represents

the length, in terms of number of requests, of our test suite from the last generation.
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Figure 4.1: Effect of changing initial number of chromosomes per genome on resource
coverage and length of the output test suite

The x-axis represents the initial number of chromosomes per genome. Since fitness

is composed of resource coverage and length, representing them both on two different

y-axes helps us to visualize the effect on each one better. The vertical lines on the bars

represent the standard deviation respectively.

As the initial number of chromosomes per genomes increases, the resource cover-

age and length of the test suite also increase. The rate of increase of resource coverage

slows down as we increase the initial number of chromosome per genome—it is bounded

by 100% coverage. Length, on the other hand, keeps increasing steadily.

Figure 4.2 gives detailed results for the experiments. The left y-axis represents

resource coverage of the best genome in each generation, the right y-axis represents
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(a) Initial chromosomes per genome = 25 (b) Initial chromosomes per genome = 50

(c) Initial chromosomes per genome = 100

Figure 4.2: Effect of changing initial number of chromosomes per genome on resource
coverage and length of the output test suite
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the length, in terms of number of requests, of the best genome in each generation, and

the x-axis represents the generation number. The 0th generation represents the initial

population of the genetic algorithm. The vertical lines on the curves represents the

standard deviation respectively.

In Figure 4.2a, the rate of increase of resource coverage is high up to the 5th

generation. The rate decreases and there is a slight and steady increase in the resource

coverage for the rest of the time. The length of the genome increases initially, and

starts to decrease after reaching a peak at 5th generation. The peak coincides with

the start of the plateau for the resource coverage curve. The length curve steadily

decreases, with a few bumps in between.

Figure 4.2b shows similar results. The curve for resource coverage plateaus

around the 4th generation, a bit earlier than in Figure 4.2a. The start of the plateau

coincides with the peak of the length curve. Resource coverage of the initial population

is higher than the resource coverage of the initial population of the previous experiment.

Figure 4.2c shows similar results as Figure 4.2a and Figure 4.2b. The overall

resource coverage and length is higher compared to the previous two experiments.

The curve for resource coverage levels out around 4th generation, but the curve for

length peaks around 5th generation. The rate of decrease of length, after its peak, is

higher than the rates in the previous two experiments. Resource coverage for the initial

population is the highest of the three experiments. Standard deviation of length for this

experiment is also higher than the standard deviation of the previous two experiments.

Figure 4.3 gives the overview of the effect of increasing initial number of chromo-

somes per genome on the average time taken to run the framework for 30 generations.

The x-axis represents the initial number of chromosomes per genome, the y-axis rep-

resents the average time taken and the vertical lines are the standard deviation of the

average time taken. As we increase the initial number of chromosomes per genome,

the average time taken to run the framework and the standard deviation of the average

time increases.

These experiments support our hypothesis that increasing the initial number of
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Figure 4.3: Effect of changing initial number of chromosomes per genome on the average
time taken to run GA for 30 generations.

chromosome per genome will increase resource coverage.

4.4.2 Mutation Threshold

Figure 4.4 exhibits the effect of changing mutation threshold on the overall

result i.e. our overall test suite. The left y-axis represents resource coverage of the best

genome, our final test suite, from the last generation, the right y-axis represents the

length, in terms of number of requests, of our test suite from the last generation and

the x-axis represents the mutation threshold. The vertical lines on the bars represent

the standard deviation respectively.

We are measuring the fitness of genomes. Since, fitness is composed of resource

coverage and length, representing them both on two different y-axes helps us to visualize

the effect on each one better. Both the resource coverage and length of our test suite
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Figure 4.4: Effect of changing mutation threshold on resource coverage and length of
the output test suite.

increases as we increase the mutation threshold. Increase in resource coverage is small,

where as increase in length is significant.

Figure 4.5 gives a detailed overview of the results for the three experiments.

The left y-axis represents resource coverage of the best genome, our final test suite,

from the last generation, the right y-axis represents the length, in terms of number

of requests, of our test suite from the last generation and the x-axis represents the

number of generation. The vertical lines on the curves represent the standard deviation

respectively.

In all of the graphs, the resource coverage of the initial population is close to

each other, around 75%. The curve for resource coverage, for all the graphs, increases
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(a) Mutation threshold of 0.10 (b) Mutation threshold of 0.25

(c) Mutation threshold of 0.50

Figure 4.5: Effect of changing mutation threshold on resource coverage and length of
output test suite
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rapidly and starts to plateau around 4th and 5th generation.In Figure 4.5c, resource

coverage increases slightly after the start of the plateau. In all the three graphs, the

curve for length increases rapidly and peaks around 5th generation. Then it starts

decreasing. Interestingly, the rate of reduction after the peak decreases, as we increase

the mutation threshold, as evidenced by Figure 4.5a and Figure 4.5b. Figure 4.5b

also has more bumps after the peak than the other two graphs. Standard deviation of

length increases as we increase the mutation threshold. Standard deviation of length

is highest for Figure 4.5c.

Figure 4.6: Effect of changing mutation threshold on the average time taken to run
GA for 30 generations.

Figure 4.6 gives the overview of the effect of changing mutation threshold on the

average time taken to run the framework for 30 generations. The x-axis represents the

mutation threshold, the y-axis represents the average time taken and the vertical lines
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are the standard deviation. As we increase the mutation threshold, the average time

taken to run the framework and the standard deviation of the average time decreases.

The results from this set of experiments do not support our hypothesis that

increasing the mutation threshold decreases coverage, since we see a slight increase in

coverage.

4.4.3 Number of Generations

We ran the experiment for 100 generations to see the effect of number of gener-

ations on the result test suite. Figure 4.7 demonstrates the results of the experiment.

The left y-axis represents resource coverage of the best genome in each generation, the

right y-axis represents the length, in terms of number of requests, of the best genome

in each generation and the x-axis represents the number of generation.

Figure 4.7: Effect of number of generations on resource coverage and length of the
output test suite

The curve for resource coverage increases rapidly initially and begins to plateau

around 5th generation. Resource coverage increases slowly, in bumps, till the 100th gen-

eration. There are slight upward bumps at around 9th, 16th, 38th and 90th generation.
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The length curve increases rapidly and peaks at around 5th generation. It decreases

rapidly till 100th generation, with few spikes in between.

Figure 4.8: Effect of increasing number of generations on the average time taken for
the framework

Figure 4.8 shows the effect of increasing the number of generations the frame-

work is run for on the average time taken for the framework to run. The x-axis repre-

sents number of generations, the y-axis represents the average time taken in minutes

and the vertical lines represent standard deviation of average time. As we increase

the number of generations, average time taken and standard deviation of average time

increases.

The results from this experiments support our hypothesis that increasing the

number of generations will yield better results.
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4.5 Analysis

We will analyse the results from the previous section here.

4.5.1 Comparing the size of the initial population

From Figure 4.1, we see that increasing the initial number of chromosome per

genome increases the resource coverage and length and from Figure 4.2, we see that

increasing the initial number of chromosome per genome increases the resource coverage

of the initial population. Increasing the initial number of chromosome per genome

increases the total number of chromosomes in the genome pool. Since there are more

number of unique resources from the beginning, the resource coverage of the initial

population is higher. The genetic algorithm also has more choice of chromosomes and

therefore can filter out the weak ones and replace them with better ones.

We also see from Figure 4.2 that the peak of length conincides with the start of

the plateau of the resource coverage curve. Since we gave more priority to increasing

coverage than reducing length by making w1 twice as big as w2, the GA focuses on

increasing resource coverage during crossover at the cost of increasing length. Around

5th generation, increase in resource coverage is minimal, therefore the GA starts to

increase fitness by reducing the length. The rate of decrease of length after the peak

is highest in Figure 4.2c since the GA has a bigger genome pool, in terms of number

of chromosomes, and has more choices of chromosomes and therefore can filter out the

weak ones and replace them with better ones.

The standard deviation is lower overall in Figure 4.2a compared to Figure 4.2b

and Figure 4.2c, since the GA with lower initial number of chromosome has a smaller

total number of chromosomes in the genome pool.

As we increase the initial number of chromosomes per genome, the average

time taken to run the framework for 30 generations increases (4.3) since we have a

higher total number of chromosomes in the genome pool and our input size is bigger.

Computationally, the system has more processing to do, specially during evaluating

fitness and rejoining genomes during crossover, as they have O(n) run time.
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4.5.2 Mutation Threshold

The slight increase in resource coverage we see in Figure 4.4 can be explained by

the high initial number of chromosomes per genome. Increasing the mutation threshold

reduces the fitness by increasing the length considerably, as seen in Figure 4.5. Muta-

tion is done randomly and it does not filter out chromosomes using the fitness function.

As we increase the mutation threshold, we do fewer crossovers, meaning fewer number

of filtering out the weaker genomes. Therefore, the reduction of length is lower. This

also explains the lower rate of decrease of length in Figure 4.5c compared to Figure 4.5a

and Figure 4.5b. Moreover, since mutation is a random swap of chromosome for chro-

mosome, the algorithm might be swapping chromosomes of different length. Therefore

we get the high standard deviation in Figure 4.5c.

As we increase the mutation threshold, the average time take to run the frame-

work for 30 generations decreases (4.6). With a higher mutation threshold, we are

doing fewer crossovers. Mutations are faster than crossover, since mutation is just a

straight swap, while crossover requires rejoining genomes, O(1) vs O(n). Moreover,

fewer crossovers mean that we have fewer possibilities of having genomes with a large

length.

4.5.3 Number of generation

From Figure 4.7, we see that increasing the number of generation increases

the fitness of the output test suite, both in terms of increasing resource coverage and

reducing length. Since we run the experiment for more generations, we do more number

of crossovers, which always try to maximize the fitness through tournament selection

(2.3.1.1). The parents chosen by tournament selection for crossover, have the highest

fitness among the randomly chosen genomes. Therefore, during a cycle of the genetic

algorithm, the child generation has a higher mean fitness than the parent generation.

As we run the GA for more generations, the mean fitness of the child generation, which

becomes parent generation for the next cycle (3.2), increases.
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Once we reach a high resource coverage, around 98%, crossover increases fitness

by reducing length. The decrease in length continues until the 88th generation, where

it starts to level off. The GA has maximized the reduction and any further reduction

might lead to reduction in resource coverage. We also see slight bumps in the resource

coverage curve. As we do more crossovers and mutations,

From Figure 4.8, we see that increasing the number of generations increases the

average time taken for the framework to run. As we run the framework for more number

of generations, we have genomes of longer length and we also do more computation.

Therefore, the average time taken increases.

4.6 Recommendations to Testers

From the above experiments, we can figure out the values of the parameters that

will give us the best set of results. Here are the recommendations for future testers

using this framework:

• If you are short in time, you can run the framework for lower number of gener-
ations. Running the framework for at least 10 generations gives good resource
coverage (4.7), though the length of the test suite is not the most cost effective.

• If you want to prioritize increasing resource coverage over reducing length, choose
a higher value for w1 than w2 (3.2).

• Choose a reasonable initial number of chromosomes per genome. You can exper-
iment with a few high values and see which one works better, since higher initial
number of chromosomes per genome yields better results (4.1).

• Choose a mutation threshold around 0.25 since that seems to work best (4.4).
Too low of a threshold will reduce the diversity of the population and the overall
fitness might not be satisfactory. Too high of a threshold will increase the length
unnecessarily.

• Run the experiment for at least 100 generations since increasing the number of
generations yields better results (4.7).

4.7 Summary

Increasing the initial number of chromosomes per genome increases the fitness

of the output test suite (4.1), since there is a higher total number of chromosomes in
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the genome pool. Therefore, we have a high fitness of the initial population and the

GA has more options to choose from and is more effective at replacing weak genomes

with stronger ones. Increasing the initial number of chromosomes per genome increases

the average time taken for the framework to run.

Increasing the mutation threshold reduces the fitness by increasing the length

considerably. As we increase the mutation threshold, we do fewer crossovers, meaning

fewer number of filtering out the weaker genomes.Increasing the mutation threshold

decreases the average time taken for the framework to run.

Increasing the number of generation increases the fitness of the output test suite,

both in terms of increasing resource coverage and reducing length. Since we run the

experiment for more generations, we do more number of crossovers, which always try

to maximize the fitness. Increasing the number of generations the framework is run for

increases the average time taken for the framework to run.

The next chapter will discuss the contributions of this thesis and the future

work that needs to be done to further improve the method in detecting faults in web

applications.
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Chapter 5

CONTRIBUTIONS AND FUTURE WORK

This chapter will serve to summarize my thesis’ contributions as well as to

outline future work that needs to be done to improve the method in detecting faults

in web applications.

5.1 Contributions

The primary goal of the thesis was to create a customizable automated genetic

algorithm framework that generated cost-effective test cases for web applications, with

the aim of finding faults within the web application. The contributions of the thesis

are as follows:

1. explored the use of genetic algorithms in test-case generation for web applica-
tions: Chapter 3 gives a detailed overview of the use of genetic algorithm in test
case generation and details how to implement genetic algorithm to generate test
cases. Chapter 4 gives the results of the experiments carried out to explore the
effectiveness of genetic-algorithm-based test case generation.

2. designed and implemented a model for representing web application test cases
as components of GA, namely, genes, chromosomes, and genomes: Section 3.6.1
describes how to convert to web app usage into components of GA. This allows
testers to run the GA and generate test cases.

3. defined crossover and mutation functions in terms of user sessions relevant to
web application testing: Section 3.4.4 describes how we defined crossover and
mutation in the genome level. The crossover and mutation functions composes
reproduction for the GA. Reproduction allows GA to optimize the solution of a
problem. The problem in our case is to generate cost effective test cases given a
set of user sessions.

4. created a framework for automatically generating test cases (evolved user ses-
sions) using tournament selection: Section 3.4 gives an overview of our framework
that generates a cost effective test suite from a given set of user sessions. The
framework is automated and customizable to cater the different needs of testers.
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5. analyzed the results and explored which parameters have the most impact on
the results: Chapter 4 details the experiments ran to test the efficacy of genetic
algorithm based test generation. It also presents the findings of the experiments
and provides detailed analysis of the results.

6. provided recommendations to web application testers for how to use the frame-
work for their process: Section 4.6 gives a set of recommendations that will
enhance test case generation for future testers.

5.2 Future Work

Future work in improving the model and evaluating the algorithm include:

1. Different coverage metrics: In this thesis, we are calculating coverage of unique
resources (request type + resource). To find faults, it is not enough to calculate
resource coverage. Future work should be done with different coverage metrics,
e.g., coverage of request type + resource + parameter name-value pairs [11].

2. Plug-able fitness functions: Coverage of critical and frequently used section of the
web app should also be taken into account. We can create a new fitness function,
which calculates the fitness based on how many frequently used resources the test
suite covers. This fitness function will increase the coverage of such resources and
can be used as a high priority test suite which quickly tests the most commonly
used features of the web app.

3. Replacing tournament selection with NSGA-II algorithm: Multi-objective evo-
lutionary algorithms (MOEA) solves problems that consists of multiple objec-
tives [4]. NSGA-II algorithm is an example of a MOEA. Our GA tries to max-
imize the fitness, composed of resource coverage and length, of the output test
suit. The problem has two objectives: increase resource coverage and reduce
length. Therefore, with NSGA-II algorithm, we will be better able to prefer one
over the other as required.

4. Take persistent state into account during crossover and mutation: If we take
persistent state into consideration, then we may have requests that are not com-
patible with other requests, i.e., a request trying to access data before it was
saved by another request; the request that saves data has to be played before
the request that accesses it. Many faults occur due to corrupted data or trying
to access data that does not exist. Future work should be done by taking the
persistent states of the web app into consideration while making test cases.

5. Implement crossover and mutation for chromosome level: Our framework defines
crossover and mutation for genome level–we mutate a genome or do crossover
with two genomes. Implementing crossover and mutation for chromosomes may
fine tune the algorithm further and may allow the GA to optimize the solution

40



more by merging two compatible user sessions together. This will allow us to
create new user sessions from existing ones and may increase the effectiveness of
test cases in finding faults, since the newly created user session might cover a
different part of the web app that the original user sessions does not.

6. Evaluation: Do experiments on different applications with more and different
user sessions. Evaluate test suites based on their ability to reveal faults.
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